Warburg effect signaling pathway

Based on Luminex technology platform, Creative Proteomics provides analysis services for key targets of warburg effect signaling pathway.

Warburg effect signaling pathway detection service(Shen, Y., et al., 2019)The Warburg effect or "aerobic glycolysis" refers to the fact that in cancer cells or other highly proliferative cell types, most of the pyruvate produced by glycolysis is directed away from the mitochondria to produce lactate by the action of lactate dehydrogenase (LDH/LDHA), a process normally reserved for the hypoxic state, and in the presence of oxygen.

The Warburg effect helps cancer cells use additional ATP to meet the high energy demands of their extraordinary growth while providing the basic building blocks of metabolites for their proliferation. Warburg effect is part of a metabolic reprogramming that has been known since the 1920s. Instead of metabolizing glucose by oxidative phosphorylation and shuttling glycolytic products into the TCA cycle, cancer cells use much more glucose than normal cells and convert glucose to lactate via aerobic glycolysis. These metabolic changes can produce precursors for the formation of nascent material. In many cases, metabolic events do not appear to be oncogenic drivers, but can be triggered by other events in the oncogenic process. For example, activation of the PI3K pathway leads to a high rate of aerobic glycolysis through alterations in enzymes and glucose transport proteins.

The Warburg effect is a defense mechanism that protects cancer cells from the higher than usual oxidative environment in which they survive. the Warburg effect is due, at least in part, to the fact that cancer cells do not utilize their mitochondria to the same extent and in the same manner as non-cancerous cells. In recent years, studies have identified mechanisms that contribute to the Warburg effect. The main ones include (1) stabilization of the tumor microenvironment and HIF, (2) oncogene activation and loss of tumor suppressor genes, and (3) mitochondrial dysfunction in cancer cells. (4) nuclear DNA mutations, (5) epigenetic changes. (6) miRNA. (7) glutamine metabolism, and (8) post-translational modifications.

Our detectable targets:

AKTc-MycULK1PFKPHGDHErk1
Erk2LKB1LDHAANTVDACBax
UCP2PDHKLC3IPROLC3ULKFIP200
VPS15VPS34UYRAGNFκBRIG-1

TRAF3

IPS-1ISGF3MSK2PI3KTBK1Vav
GASIRF9AMBRA1p38RIP1TRAF5
IKK-βIRS2MSK1p65Tak1TLR3
Histone-H3IRF5MEK3p38MAPKSH2TRAF6
IKK-αIRS1MEK6p50p53TRAM
TRIFIRAK1ISREmTORPKR 

Technology platform:

We provide Luminex technology for warburg effect signaling pathway analysis.

Luminex technology is a multifunctional liquid phase analysis platform developed on the basis of high-speed digital signal processing technology, colored microspheres, applied fluidics and laser technology. The core is the use of fluorescent dyes to encode magnetic microspheres and polypropylene microspheres. By adjusting the different ratios of different fluorescent dyes, more than 100 microspheres with different fluorescence spectra are obtained. Reactions are carried out on microspheres with different fluorescent codes, such as nucleic acid hybridization, antigen-antibody, enzyme-substrate, ligand-receptor binding reactions. Using laser detection technology, qualitative and quantitative analysis of microsphere encoding and reporting fluorescence.

In addition to Luminex multiplex assay, enzyme-linked immunosorbent assay (ELISA), flow cytometry (FACS analysis) technology can also be provided to meet other customer needs.

Advantages of warburg effect signaling pathway detection:

Advantages of warburg effect signaling pathway detection

Application of our service:

Creative Proteomics has developed a signal pathway target detection platform. We are not limited to providing warburg effect signal path detection services, but can also provide other signal path detection services. If you want to detect other targets, please contact us and we will customize the service for you. Look forward to working with you.

References:

  1. Benjamin K. Tsang, et al. Molecular and Cellular Basis of Chemoresistance in Ovarian Cancer Meshach Asare-Werehene, in The Ovary (Third Edition), 2019.
  2. Shen, Y., Chen, G., et al. Arhgap4 mediates the warburg effect in pancreatic cancer through the mtor and hif-1α signaling pathways. OncoTargets and therapy, 2019, 12, 5003.
  3. Samudio I, Fiegl M, et al. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res, 2019, 69(6): 2163–2166.
  4. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer11(2), 85-95.
* For Research Use Only. Do Not use in diagnostic or therapeutic procedures.

Online Inquiry

×

Contact Us

  • Tel:
  • Fax:
  • Email:
  • Address:
Copyright © 2022 Creative Proteomics. All rights reserved.